Perovskite-BiVO4 floating devices for scalable solar fuel production

0
  • Kim, JH, Hansora, D., Sharma, P., Jang, J.-W. & Lee, JS Towards practical solar hydrogen production – an artificial photosynthetic challenge from leaf to farm. Chem. Soc. Round. 481908-1971 (2019).

    CAS Google Scholar Article

  • Reece, SY et al. Wireless solar water separation using silicon-based semiconductors and earth-abundant catalysts. Science 334645–648 (2011).

    ADS CAS Article Google Scholar

  • Li, Z et al. Scalable fabrication of perovskite solar cells. Nat. Rev. Mater. 318017 (2018).

    ADS CAS Article Google Scholar

  • Schäppi, R. et al. Instant fuels from sunlight and air. Nature 60163–68 (2022).

    Article on Google Scholar Ads

  • Sokol, KP & Andrei, V. Automated Synthesis and Characterization Techniques for Solar Fuel Production. Nat. Rev. Mater. seven251–253 (2022).

  • Waldrop, MM Games are made for Moore’s Law. Nature 530144–147 (2016).

    ADS CAS Article Google Scholar

  • Yu, X et al. Graphene-based smart materials. Nat. Rev. Mater. 217046 (2017).

    ADS CAS Article Google Scholar

  • Kang, J., Tok, JB-H. & Bao, Z. Self-Healing Soft Electronics. Nat. Electron. 2144-150 (2019).

    Google Scholar article

  • Someya, T., Bao, Z. & Malliaras, GG The rise of plastic bioelectronics. Nature 540379–385 (2016).

    ADS CAS Article Google Scholar

  • Andersen, TR et al. Ambient atmosphere scalable roll-to-roll fabrication of encapsulated large area flexible organic tandem solar cell modules. Energy Approx. Science. seven2925-2933 (2014).

    CAS Google Scholar Article

  • Fakharuddin, A., Jose, R., Brown, TM, Fabregat-Santiago, F. & Bisquert, J. A perspective on the production of dye-sensitized solar modules. Energy Approx. Science. seven3952–3981 (2014).

    CAS Google Scholar Article

  • Kaltenbrunner, M. et al. Flexible high power-per-weight perovskite solar cells with chromium-oxide-metal contacts for improved stability in air. Nat. Mater. 141032-1039 (2015).

    ADS CAS Article Google Scholar

  • Chen, J., Dong, C., Idriss, H., Mohammed, OF, and Bakr, OM Metal halide perovskites for conversion of solar fuel to chemical fuel. Adv. Energy material. ten1902433 (2019).

    Google Scholar article

  • Andrei, V., Reuillard, B. & Reisner, E. Bias-Free Solar Syngas Production by Integrating Cobalt Molecular Catalyst with Perovskite-BiVO4 tandems. Nat. Mater. 19189–194 (2020).

    ADS CAS Article Google Scholar

  • Zhang, H. et al. A sandwich type organo-lead halide perovskite photocathode for efficient and long-lasting photoelectrochemical hydrogen evolution in water. Adv. Energy material. 81800795 (2018).

    Google Scholar article

  • Suter, S. & Haussener, S. Optimization of mesostructured silver catalysts for the selective conversion of carbon dioxide into fuels. Energy Approx. Science. 121668-1678 (2019).

    CAS Google Scholar Article

  • Hall, AS, Yoon, Y., Wuttig, A., and Surendranath, Y. Mesostructure-induced selectivity in CO2 reduction catalysis. Jam. Chem. Soc. 13714834–14837 (2015).

    CAS Google Scholar Article

  • Wang, Q., Dong, Q., Li, T., Gruverman, A. & Huang, J. Thin insulating tunnel contacts for efficient, water-resistant perovskite solar cells. Adv. Mater. 286734–6739 (2016).

    CAS Google Scholar Article

  • Crespo-Quesada, M. et al. Metal-encapsulated organ-lead halide perovskite photocathode for solar evolution of hydrogen into water. Nat. Common. seven12555 (2016).

    ADS CAS Article Google Scholar

  • Wang, M. et al. Defect passivation using ultrathin PTAA layers for efficient and stable perovskite solar cells with high fill factor and eliminated hysteresis. J. Mater. Chem. A seven26421–26428 (2019).

    CAS Google Scholar Article

  • Jeng, J.-Y. et al. CH nickel oxide electrode spacer3NH3PbI3 Hybrid perovskite/PCBM planar heterojunction solar cells. Adv. Mater. 264107–4113 (2014).

    CAS Google Scholar Article

  • Andrei, V. et al. Scalable Tri-Cation Mixed Halide Perovskite – BiVO4 tandems for bias-free water separation. Adv. Energy material. 81801403 (2018).

    Google Scholar article

  • Cheng, W.-H. et al. Monolithic photoelectrochemical device for the direct separation of water with an efficiency of 19%. ACS Energy Lett. 31795–1800 (2018).

    CAS Google Scholar Article

  • Young, JL et al. Direct conversion of solar to hydrogen via inverted metamorphic multi-junction semiconductor architectures. Nat. Energy 217028 (2017).

    ADS CAS Article Google Scholar

  • Yang, W., Prabhakar, RR, Tan, J., Tilley, SD, and Moon, J. Strategies to improve photocurrent, photovoltage, and stability of photoelectrodes for photoelectrochemical separation of water. Chem. Soc. Round. 484979–5015 (2019).

    CAS Google Scholar Article

  • Kim, TW and Choi, K.-S. Nanoporous BiVO4 photoanodes with double layer oxygen evolution catalysts for solar water separation. Science 343990–994 (2014).

    ADS CAS Article Google Scholar

  • Hankin, A. et al. From millimeter to meter: the critical role of current density distributions in the design of photo-electrochemical reactors. Energy Approx. Science. ten346–360 (2017).

    CAS Google Scholar Article

  • Hou, Y., Zuo, F., Dagg, AP, Liu, J. & Feng, P. WO branched3 nanosheet array with layered C3NOT4 heterojunctions and CoOX nanoparticles as a flexible photoanode for efficient photoelectrochemical oxidation of water. Adv. Mater. 265043-5049 (2014).

    CAS Google Scholar Article

  • Nitopi, S. et al. Progress and Prospects of Electrochemical CO2 reduction on copper in the aqueous electrolyte. Chem. Round. 1197610–7672 (2019).

    CAS Google Scholar Article

  • Wang, Q et al. Molecularly engineered photocatalyst sheet for the scalable production of solar formate from carbon dioxide and water. Nat. Energy 5703–710 (2020).

    ADS CAS Article Google Scholar

  • Kasap, H., Achilleos, DS, Huang, A. & Reisner, E. Photoreforming of lignocellulose into H2 using nano-engineered carbon nitride under mild conditions. Jam. Chem. Soc. 14011604–11607 (2018).

    CAS Google Scholar Article

  • Weraduwage, SM et al. The relationship between leaf area growth and biomass accumulation in Arabidopsis thaliana. Front. Factory Sci. 6167 (2015).

    Google Scholar article

  • Achilleos, DS et al. Solar biomass reformer with homogeneous carbon points. Angelw. Chem. Int. Ed. English 5918184–18188 (2020).

    CAS Google Scholar Article

  • Nishiyama, H. et al. Production of photocatalytic solar hydrogen from water over 100 m2-ladder. Nature 598304–307 (2021).

    ADS CAS Article Google Scholar

  • Sahu, A., Yadav, N. & Sudhakar, K. Floating Photovoltaic Power Plant: A Review. Renew. Sustain. Energy Rev. 66815–824 (2016).

    Google Scholar article

  • Chun, K.-Y. et al. Highly conductive, printable and stretchable composite films of carbon and silver nanotubes. Nat. Nanotechnology. 5853–857 (2010).

    ADS CAS Article Google Scholar

  • de Lima, RLP, Paxinou, KC, Boogaard, F., Akkerman, O. & Lin, F.-Y. In-situ observations of water quality under a large-scale floating solar farm using underwater sensors and drones. Sustainability 136421 (2021).

    Google Scholar article

  • Liu, X. et al. 20.7% Highly reproducible inverted planar perovskite solar cells with improved fill factor and eliminated hysteresis. Energy Approx. Science. 121622-1633 (2019).

    Google Scholar article

  • Gorham, WF A new general synthetic method for the preparation of linear poly-p-xylylenes. J.Polym. Science. A1 43027-3039 (1966).

    CAS Google Scholar Article

  • Lu, H. et al. Single-Source Bismuth (Transition Metal) Polyoxovanadate Precursors for Scalable Synthesis of Doped BiVO4 photoanodes. Adv. Mater. 301804033 (2018).

    Google Scholar article

  • Andrei, V. et al. Dataset for ‘Floating perovskite-BiVO4 devices for the scalable production of solar fuel”. Apollo Repository, University of Cambridge https://doi.org/10.17863/CAM.82770 (2022).

  • Share.

    About Author

    Comments are closed.